snjl

我大概率会编程。


  • 首页

  • 标签

  • 分类

  • 归档

  • 搜索

scrapy管道

发表于 2019-01-31 | 分类于 scrapy , 爬虫
字数统计: 1.4k 字 | 阅读时长 ≈ 6 分钟

参考项目:https://github.com/snjl/python.spider.scrapy_test.git

Item Pipeline

当Item在Spider中被收集之后,它将会被传递到Item Pipeline,一些组件会按照一定的顺序执行对Item的处理。

每个item pipeline组件(有时称之为“Item Pipeline”)是实现了简单方法的Python类。他们接收到Item并通过它执行一些行为,同时也决定此Item是否继续通过pipeline,或是被丢弃而不再进行处理。

以下是item pipeline的一些典型应用:

  • 清理HTML数据
  • 验证爬取的数据(检查item包含某些字段)
  • 查重(并丢弃)
  • 将爬取结果保存到数据库中
    阅读全文 »

安装nginx和简单使用

发表于 2019-01-31 | 分类于 服务器
字数统计: 36 字 | 阅读时长 ≈ 1 分钟
1
apt install nginx

启动nginx

1
service nginx start

需要输入密码,成功即启动。

修改nginx配置文件:

1
vi /etc/nginx/nginx.conf

nginx重启

1
service nginx reload

selenium简单使用

发表于 2019-01-31 | 分类于 爬虫
字数统计: 5.8k 字 | 阅读时长 ≈ 24 分钟

selenium可以解决js渲染问题,模拟网页加载。

简单示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait

browser = webdriver.Chrome()
try:
browser.get('https://www.baidu.com')
input = browser.find_element_by_id('kw')
input.send_keys('Python')
input.send_keys(Keys.ENTER)
wait = WebDriverWait(browser, 10)
wait.until(EC.presence_of_element_located((By.ID, 'content_left')))
print(browser.current_url)
print(browser.get_cookies())
print(browser.page_source)
finally:
browser.close()

运行代码之后,如果正确配置好了ChromeDriver,可以发现会自动弹出一个浏览器,浏览器首先会跳转到百度,然后在搜索框中输入Python进行搜索,然后跳转到搜索结果页,等待搜索结果加载出来之后,控制台分别会输出当前的URL,当前的Cookies还有网页源代码。

阅读全文 »

升级pip后出现importError报错

发表于 2019-01-31 | 分类于 报错 , python
字数统计: 111 字 | 阅读时长 ≈ 1 分钟

升级pip后出现ImportError: cannot import name main

产生原因

在Ubuntu中,升级了pip,再次使用pip 安装相关的python包的时候就出现以下错误

1
ImportError: cannot import name main

解决方法

进入usr/bin目录,修改pip(或pip3)文件进行修改:

1
2
vim /usr/bin/pip
vim /usr/bin/pip3

把下面的三行

1
2
3
from pip import main
if __name__ == '__main__':
sys.exit(main())

换成下面的三行

1
2
3
from pip import __main__
if __name__ == '__main__':
sys.exit(__main__._main())

winscp服务器拒绝了SFTP连接,但它监听FTP连接

发表于 2019-01-31 | 分类于 报错 , 服务器
字数统计: 42 字 | 阅读时长 ≈ 1 分钟

出错: 在linux系统上没有安装sshd或者sshd配置出错

原因是没有安装sshd或者sshd配置出错。

解决方法

安装openssh-server

1
apt install openssh-server

操作文件和目录

发表于 2019-01-31 | 分类于 python
字数统计: 1.2k 字 | 阅读时长 ≈ 5 分钟

如果我们要操作文件、目录,可以在命令行下面输入操作系统提供的各种命令来完成。比如dir、cp等命令。

如果要在Python程序中执行这些目录和文件的操作怎么办?其实操作系统提供的命令只是简单地调用了操作系统提供的接口函数,Python内置的os模块也可以直接调用操作系统提供的接口函数。

打开Python交互式命令行,我们来看看如何使用os模块的基本功能:

1
2
3
4

>>> import os
>>> os.name # 操作系统类型
'posix'

如果是posix,说明系统是Linux、Unix或Mac OS X,如果是nt,就是Windows系统。

要获取详细的系统信息,可以调用uname()函数:

1
2
>>> os.uname()
posix.uname_result(sysname='Darwin', nodename='MichaelMacPro.local', release='14.3.0', version='Darwin Kernel Version 14.3.0: Mon Mar 23 11:59:05 PDT 2015; root:xnu-2782.20.48~5/RELEASE_X86_64', machine='x86_64')

注意uname()函数在Windows上不提供,也就是说,os模块的某些函数是跟操作系统相关的。

环境变量

在操作系统中定义的环境变量,全部保存在os.environ这个变量中,可以直接查看:

1
2
>>> os.environ
environ({'VERSIONER_PYTHON_PREFER_32_BIT': 'no', 'TERM_PROGRAM_VERSION': '326', 'LOGNAME': 'michael', 'USER': 'michael', 'PATH': '/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/opt/X11/bin:/usr/local/mysql/bin', ...})

要获取某个环境变量的值,可以调用os.environ.get(‘key’):

1
2
3
4
>>> os.environ.get('PATH')
'/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/opt/X11/bin:/usr/local/mysql/bin'
>>> os.environ.get('x', 'default')
'default'

操作文件和目录

操作文件和目录的函数一部分放在os模块中,一部分放在os.path模块中,这一点要注意一下。查看、创建和删除目录可以这么调用:

查看当前目录的绝对路径:

1
2
3
4
5
6
7
8
9
>>> os.path.abspath('.')
'/Users/michael'
# 在某个目录下创建一个新目录,首先把新目录的完整路径表示出来:
>>> os.path.join('/Users/michael', 'testdir')
'/Users/michael/testdir'
# 然后创建一个目录:
>>> os.mkdir('/Users/michael/testdir')
# 删掉一个目录:
>>> os.rmdir('/Users/michael/testdir')

把两个路径合成一个时,不要直接拼字符串,而要通过os.path.join()函数,这样可以正确处理不同操作系统的路径分隔符。在Linux/Unix/Mac下,os.path.join()返回这样的字符串:

1
part-1/part-2

而Windows下会返回这样的字符串:

1
part-1\part-2

同样的道理,要拆分路径时,也不要直接去拆字符串,而要通过os.path.split()函数,这样可以把一个路径拆分为两部分,后一部分总是最后级别的目录或文件名:

1
2
3
4
5
6
>>> os.path.split('/Users/michael/testdir/file.txt')
('/Users/michael/testdir', 'file.txt')
os.path.splitext()可以直接让你得到文件扩展名,很多时候非常方便:

>>> os.path.splitext('/path/to/file.txt')
('/path/to/file', '.txt')

这些合并、拆分路径的函数并不要求目录和文件要真实存在,它们只对字符串进行操作。

文件操作使用下面的函数。假定当前目录下有一个test.txt文件:

1
2
3
4
# 对文件重命名:
>>> os.rename('test.txt', 'test.py')
# 删掉文件:
>>> os.remove('test.py')

但是复制文件的函数居然在os模块中不存在!原因是复制文件并非由操作系统提供的系统调用。理论上讲,我们通过上一节的读写文件可以完成文件复制,只不过要多写很多代码。

幸运的是shutil模块提供了copyfile()的函数,你还可以在shutil模块中找到很多实用函数,它们可以看做是os模块的补充。

最后看看如何利用Python的特性来过滤文件。比如我们要列出当前目录下的所有目录,只需要一行代码:

1
2
>>> [x for x in os.listdir('.') if os.path.isdir(x)]
['.lein', '.local', '.m2', '.npm', '.ssh', '.Trash', '.vim', 'Applications', 'Desktop', ...]

要列出所有的.py文件,也只需一行代码:

1
2
>>> [x for x in os.listdir('.') if os.path.isfile(x) and os.path.splitext(x)[1]=='.py']
['apis.py', 'config.py', 'models.py', 'pymonitor.py', 'test_db.py', 'urls.py', 'wsgiapp.py']

小结

Python的os模块封装了操作系统的目录和文件操作,要注意这些函数有的在os模块中,有的在os.path模块中。

序列化

发表于 2019-01-31 | 分类于 python
字数统计: 2k 字 | 阅读时长 ≈ 8 分钟

在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict:

1
d = dict(name='Bob', age=20, score=88)

可以随时修改变量,比如把name改成’Bill’,但是一旦程序结束,变量所占用的内存就被操作系统全部回收。如果没有把修改后的’Bill’存储到磁盘上,下次重新运行程序,变量又被初始化为’Bob’。

我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。

反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

Python提供了pickle模块来实现序列化。

首先,我们尝试把一个对象序列化并写入文件:

1
2
3
4
>>> import pickle
>>> d = dict(name='Bob', age=20, score=88)
>>> pickle.dumps(d)
b'\x80\x03}q\x00(X\x03\x00\x00\x00ageq\x01K\x14X\x05\x00\x00\x00scoreq\x02KXX\x04\x00\x00\x00nameq\x03X\x03\x00\x00\x00Bobq\x04u.'

pickle.dumps()方法把任意对象序列化成一个bytes,然后,就可以把这个bytes写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object:

1
2
3
>>> f = open('dump.txt', 'wb')
>>> pickle.dump(d, f)
>>> f.close()

看看写入的dump.txt文件,一堆乱七八糟的内容,这些都是Python保存的对象内部信息。

当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:

1
2
3
4
5
>>> f = open('dump.txt', 'rb')
>>> d = pickle.load(f)
>>> f.close()
>>> d
{'age': 20, 'score': 88, 'name': 'Bob'}

变量的内容又回来了!

当然,这个变量和原来的变量是完全不相干的对象,它们只是内容相同而已。

Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。

JSON

如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。

JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:

1
2
3
4
5
6
7
JSON类型	Python类型
{} dict
[] list
"string" str
1234.56 int或float
true/false True/False
null None

Python内置的json模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:

1
2
3
4
>>> import json
>>> d = dict(name='Bob', age=20, score=88)
>>> json.dumps(d)
'{"age": 20, "score": 88, "name": "Bob"}'

dumps()方法返回一个str,内容就是标准的JSON。类似的,dump()方法可以直接把JSON写入一个file-like Object。

要把JSON反序列化为Python对象,用loads()或者对应的load()方法,前者把JSON的字符串反序列化,后者从file-like Object中读取字符串并反序列化:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> f = open('d.txt','w') #此处是w写入,不是wb,写入的文件可读
>>> json.dump(d,f) # 将d写入文件f中
>>> f.close()

>>> f = open('d.txt','r') # 从文件读入json的方式一
>>> w = json.load(f)
>>> w
'{"age": 20, "score": 88, "name": "Bob"}'
>>> f.close()

>>> f = open('d.txt','r') # 从文件读入json的方式二
>>> w = json.loads(f.read())
>>> w
'{"age": 20, "score": 88, "name": "Bob"}'
>>> f.close()

注意:使用dump方法写入文件时,文件打开方式要为w,而不是wb。如果将文件读成字符串,使用的是load,如果直接读入文件,使用的是loads。
由于JSON标准规定JSON编码是UTF-8,所以我们总是能正确地在Python的str与JSON的字符串之间转换。

JSON进阶

Python的dict对象可以直接序列化为JSON的{},不过,很多时候,我们更喜欢用class表示对象,比如定义Student类,然后序列化:

1
2
3
4
5
6
7
8
9
10
import json

class Student(object):
def __init__(self, name, age, score):
self.name = name
self.age = age
self.score = score

s = Student('Bob', 20, 88)
print(json.dumps(s))

运行代码,毫不留情地得到一个TypeError:

1
2
3
Traceback (most recent call last):
...
TypeError: <__main__.Student object at 0x10603cc50> is not JSON serializable

错误的原因是Student对象不是一个可序列化为JSON的对象。

如果连class的实例对象都无法序列化为JSON,这肯定不合理!

别急,我们仔细看看dumps()方法的参数列表,可以发现,除了第一个必须的obj参数外,dumps()方法还提供了一大堆的可选参数:

https://docs.python.org/3/library/json.html#json.dumps

这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student类实例序列化为JSON,是因为默认情况下,dumps()方法不知道如何将Student实例变为一个JSON的{}对象。

可选参数default就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student专门写一个转换函数,再把函数传进去即可:

1
2
3
4
5
6
def student2dict(std):
return {
'name': std.name,
'age': std.age,
'score': std.score
}

这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化为JSON:

1
2
>>> print(json.dumps(s, default=student2dict))
{"age": 20, "name": "Bob", "score": 88}

不过,下次如果遇到一个Teacher类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class的实例变为dict:

1
print(json.dumps(s, default=lambda obj: obj.__dict__))

因为通常class的实例都有一个dict属性,它就是一个dict,用来存储实例变量。也有少数例外,比如定义了slots的class。

同样的道理,如果我们要把JSON反序列化为一个Student对象实例,loads()方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例:

1
2
def dict2student(d):
return Student(d['name'], d['age'], d['score'])

运行结果如下:

1
2
3
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}'
>>> print(json.loads(json_str, object_hook=dict2student))
<__main__.Student object at 0x10cd3c190>

打印出的是反序列化的Student实例对象。

小结

Python语言特定的序列化模块是pickle,但如果要把序列化搞得更通用、更符合Web标准,就可以使用json模块。

json模块的dumps()和loads()函数是定义得非常好的接口的典范。当我们使用时,只需要传入一个必须的参数。但是,当默认的序列化或反序列机制不满足我们的要求时,我们又可以传入更多的参数来定制序列化或反序列化的规则,既做到了接口简单易用,又做到了充分的扩展性和灵活性。

requests库高级用法

发表于 2019-01-31 | 分类于 python
字数统计: 2.3k 字 | 阅读时长 ≈ 12 分钟

上传文件

1
2
3
4
5
6
7
8
9
>>> r = requests.post('http://httpbin.org/post',files=files)
>>> print(r.text)
{
'args':{},
'data':"",
'files':{
xxxxx
},
···
阅读全文 »

文件读写

发表于 2019-01-31 | 分类于 python
字数统计: 1.7k 字 | 阅读时长 ≈ 6 分钟

读写文件是最常见的IO操作。Python内置了读写文件的函数,用法和C是兼容的。

读写文件前,我们先必须了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘,所以,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个文件对象中读取数据(读文件),或者把数据写入这个文件对象(写文件)。

读文件

要以读文件的模式打开一个文件对象,使用Python内置的open()函数,传入文件名和标示符:

1
2

>>> f = open('/Users/michael/test.txt', 'r')

标示符’r’表示读,这样,我们就成功地打开了一个文件。

如果文件不存在,open()函数就会抛出一个IOError的错误,并且给出错误码和详细的信息告诉你文件不存在:

1
2
3
4
5

>>> f=open('/Users/michael/notfound.txt', 'r')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: '/Users/michael/notfound.txt'

如果文件打开成功,接下来,调用read()方法可以一次读取文件的全部内容,Python把内容读到内存,用一个str对象表示:

1
2
3

>>> f.read()
'Hello, world!'

最后一步是调用close()方法关闭文件。文件使用完毕后必须关闭,因为文件对象会占用操作系统的资源,并且操作系统同一时间能打开的文件数量也是有限的:

1
2

>>> f.close()

由于文件读写时都有可能产生IOError,一旦出错,后面的f.close()就不会调用。所以,为了保证无论是否出错都能正确地关闭文件,我们可以使用try … finally来实现:

1
2
3
4
5
6
7

try:
f = open('/path/to/file', 'r')
print(f.read())
finally:
if f:
f.close()

但是每次都这么写实在太繁琐,所以,Python引入了with语句来自动帮我们调用close()方法:

1
2
3

with open('/path/to/file', 'r') as f:
print(f.read())

这和前面的try … finally是一样的,但是代码更佳简洁,并且不必调用f.close()方法。

调用read()会一次性读取文件的全部内容,如果文件有10G,内存就爆了,所以,要保险起见,可以反复调用read(size)方法,每次最多读取size个字节的内容。另外,调用readline()可以每次读取一行内容,调用readlines()一次读取所有内容并按行返回list。因此,要根据需要决定怎么调用。

如果文件很小,read()一次性读取最方便;如果不能确定文件大小,反复调用read(size)比较保险;如果是配置文件,调用readlines()最方便:

1
2
3

for line in f.readlines():
print(line.strip()) # 把末尾的'\n'删掉

file-like Object

像open()函数返回的这种有个read()方法的对象,在Python中统称为file-like Object。除了file外,还可以是内存的字节流,网络流,自定义流等等。file-like Object不要求从特定类继承,只要写个read()方法就行。

StringIO就是在内存中创建的file-like Object,常用作临时缓冲。

二进制文件

前面讲的默认都是读取文本文件,并且是UTF-8编码的文本文件。要读取二进制文件,比如图片、视频等等,用’rb’模式打开文件即可:

1
2
3
4

>>> f = open('/Users/michael/test.jpg', 'rb')
>>> f.read()
b'\xff\xd8\xff\xe1\x00\x18Exif\x00\x00...' # 十六进制表示的字节

字符编码

要读取非UTF-8编码的文本文件,需要给open()函数传入encoding参数,例如,读取GBK编码的文件:

1
2
3
4

>>> f = open('/Users/michael/gbk.txt', 'r', encoding='gbk')
>>> f.read()
'测试'

遇到有些编码不规范的文件,你可能会遇到UnicodeDecodeError,因为在文本文件中可能夹杂了一些非法编码的字符。遇到这种情况,open()函数还接收一个errors参数,表示如果遇到编码错误后如何处理。最简单的方式是直接忽略:

1
2

>>> f = open('/Users/michael/gbk.txt', 'r', encoding='gbk', errors='ignore')

写文件

写文件和读文件是一样的,唯一区别是调用open()函数时,传入标识符’w’或者’wb’表示写文本文件或写二进制文件:

1
2
3
4

>>> f = open('/Users/michael/test.txt', 'w')
>>> f.write('Hello, world!')
>>> f.close()

你可以反复调用write()来写入文件,但是务必要调用f.close()来关闭文件。当我们写文件时,操作系统往往不会立刻把数据写入磁盘,而是放到内存缓存起来,空闲的时候再慢慢写入。只有调用close()方法时,操作系统才保证把没有写入的数据全部写入磁盘。忘记调用close()的后果是数据可能只写了一部分到磁盘,剩下的丢失了。所以,还是用with语句来得保险:

1
2
3

with open('/Users/michael/test.txt', 'w') as f:
f.write('Hello, world!')

要写入特定编码的文本文件,请给open()函数传入encoding参数,将字符串自动转换成指定编码。

细心的童鞋会发现,以’w’模式写入文件时,如果文件已存在,会直接覆盖(相当于删掉后新写入一个文件)。如果我们希望追加到文件末尾怎么办?可以传入’a’以追加(append)模式写入。

所有模式的定义及含义可以参考Python的官方文档。

需要多次读取同一文件内容

python在读取文件的时候是根据光标位置来读取的。读一行以后光标位置到了下一行。再来个read又到了下一行。

想要重新从头开始读的话用f.seek(0)

将光标位置放到最前面。这样再f.read()就是第一行的内容

还有个方法是f.tell()

告诉你当前光标的位置。你可以把文件都读完了以后f.tell()一下看看光标位置

然后再f.seek(0)

再f.tell()一下看看光标位置
如下所示:

1
2
3
4
5
6
7
8
9
>>> f = f.open('a.txt','r')
>>> f.read()
>>> 'abc'
>>> f.read()
>>> ''
>>> f.seek(0)
>>> 'abc'
>>> f.seek(1)
>>> 'bc'

小结

在Python中,文件读写是通过open()函数打开的文件对象完成的。使用with语句操作文件IO是个好习惯。

单元测试

发表于 2019-01-31 | 分类于 python
字数统计: 1.3k 字 | 阅读时长 ≈ 5 分钟

如果你听说过“测试驱动开发”(TDD:Test-Driven Development),单元测试就不陌生。

单元测试是用来对一个模块、一个函数或者一个类来进行正确性检验的测试工作。

比如对函数abs(),我们可以编写出以下几个测试用例:

输入正数,比如1、1.2、0.99,期待返回值与输入相同;

输入负数,比如-1、-1.2、-0.99,期待返回值与输入相反;

输入0,期待返回0;

输入非数值类型,比如None、[]、{},期待抛出TypeError。

把上面的测试用例放到一个测试模块里,就是一个完整的单元测试。

如果单元测试通过,说明我们测试的这个函数能够正常工作。如果单元测试不通过,要么函数有bug,要么测试条件输入不正确,总之,需要修复使单元测试能够通过。

单元测试通过后有什么意义呢?如果我们对abs()函数代码做了修改,只需要再跑一遍单元测试,如果通过,说明我们的修改不会对abs()函数原有的行为造成影响,如果测试不通过,说明我们的修改与原有行为不一致,要么修改代码,要么修改测试。

这种以测试为驱动的开发模式最大的好处就是确保一个程序模块的行为符合我们设计的测试用例。在将来修改的时候,可以极大程度地保证该模块行为仍然是正确的。

我们来编写一个Dict类,这个类的行为和dict一致,但是可以通过属性来访问,用起来就像下面这样:

1
2
3
4
5
6

>>> d = Dict(a=1, b=2)
>>> d['a']
1
>>> d.a
1

mydict.py代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

class Dict(dict):

def __init__(self, **kw):
super().__init__(**kw)

def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Dict' object has no attribute '%s'" % key)

def __setattr__(self, key, value):
self[key] = value

为了编写单元测试,我们需要引入Python自带的unittest模块,编写mydict_test.py如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

import unittest

from mydict import Dict

class TestDict(unittest.TestCase):

def test_init(self):
d = Dict(a=1, b='test')
self.assertEqual(d.a, 1)
self.assertEqual(d.b, 'test')
self.assertTrue(isinstance(d, dict))

def test_key(self):
d = Dict()
d['key'] = 'value'
self.assertEqual(d.key, 'value')

def test_attr(self):
d = Dict()
d.key = 'value'
self.assertTrue('key' in d)
self.assertEqual(d['key'], 'value')

def test_keyerror(self):
d = Dict()
with self.assertRaises(KeyError):
value = d['empty']

def test_attrerror(self):
d = Dict()
with self.assertRaises(AttributeError):
value = d.empty

编写单元测试时,我们需要编写一个测试类,从unittest.TestCase继承。

以test开头的方法就是测试方法,不以test开头的方法不被认为是测试方法,测试的时候不会被执行。

对每一类测试都需要编写一个test_xxx()方法。由于unittest.TestCase提供了很多内置的条件判断,我们只需要调用这些方法就可以断言输出是否是我们所期望的。最常用的断言就是assertEqual():

1
2

self.assertEqual(abs(-1), 1) # 断言函数返回的结果与1相等

另一种重要的断言就是期待抛出指定类型的Error,比如通过d[‘empty’]访问不存在的key时,断言会抛出KeyError:

1
2
3

with self.assertRaises(KeyError):
value = d['empty']

而通过d.empty访问不存在的key时,我们期待抛出AttributeError:

1
2
3

with self.assertRaises(AttributeError):
value = d.empty

运行单元测试

一旦编写好单元测试,我们就可以运行单元测试。最简单的运行方式是在mydict_test.py的最后加上两行代码:

1
2
3

if __name__ == '__main__':
unittest.main()

这样就可以把mydict_test.py当做正常的python脚本运行:

1
$ python mydict_test.py

另一种方法是在命令行通过参数-m unittest直接运行单元测试:

1
2
3
4
5
6
7

$ python -m unittest mydict_test
.....
----------------------------------------------------------------------
Ran 5 tests in 0.000s

OK

这是推荐的做法,因为这样可以一次批量运行很多单元测试,并且,有很多工具可以自动来运行这些单元测试。

1
setUp与tearDown

可以在单元测试中编写两个特殊的setUp()和tearDown()方法。这两个方法会分别在每调用一个测试方法的前后分别被执行。

setUp()和tearDown()方法有什么用呢?设想你的测试需要启动一个数据库,这时,就可以在setUp()方法中连接数据库,在tearDown()方法中关闭数据库,这样,不必在每个测试方法中重复相同的代码:

1
2
3
4
5
6
7
class TestDict(unittest.TestCase):

def setUp(self):
print('setUp...')

def tearDown(self):
print('tearDown...')

可以再次运行测试看看每个测试方法调用前后是否会打印出setUp…和tearDown…。

小结

单元测试可以有效地测试某个程序模块的行为,是未来重构代码的信心保证。

单元测试的测试用例要覆盖常用的输入组合、边界条件和异常。

单元测试代码要非常简单,如果测试代码太复杂,那么测试代码本身就可能有bug。

单元测试通过了并不意味着程序就没有bug了,但是不通过程序肯定有bug。

1…345…21
snjl

snjl

越过山丘,才发现无人等候。

203 日志
44 分类
107 标签
RSS
GitHub E-Mail Weibo
© 2019 snjl
总访问量次 | 总访客人 |
由 Hexo 强力驱动
|
主题 — NexT.Mist v5.1.4